Comparison of 0.5% Ropivacaine and 0.5% Bupivacaine in Supraclavicular Brachial Plexus Block For Upper Limb Surgery

Balwinderjit Singh1, Iqbal Singh2

1Professor, Dept. of Anesthesia, PIMS, Jalandhar, Punjab-India, 2Ex-Professor and head, Dept. of Anesthesia, PIMS, Jalandhar, Punjab- India.

Abstract

Background: Brachial plexus blocks are commonly used for forearm and hand surgeries but due to adverse effect like cardiotoxicity there is lot of research going on to find more cardiostable agent. Ropivacaine is commonly tried nowadays in place of bupivacaine for brachial plexus block. It is new amino amide local anaesthetic having less cardiac toxicity as compared to bupivacaine. The present study was performed at our Institute to compare the Clinical characteristics of 0.5% ropivacaine and 0.5% bupivacaine when used for supraclavicular brachial plexus block in forearm and hand surgeries.

Subjects and Methods: In this prospective randomised study sixty patients of ASA-I and II scheduled for forearm and hand surgeries under supraclavicular brachial plexus block were randomly divided into two groups of thirty each. Group R received Ropivacaine 0.5% 20 ml + 10ml normal saline while Group B received Bupivacaine 0.5% 20 ml + 10ml normal saline. Mean pulse, blood pressure, onset of sensory and motor blockade, duration of analgesia, and side effects of local anaesthetic used were noted in both the groups. Statistical analysis for clinical characteristics was done by student t test and ANOVA was used to analyze hemodynamic variations between two groups. p<0.05 considered as significant and p<0.01 considered as highly significant.

Results: Mean onset time of sensory blockade was 5.5 ± 0.89 mins in Group R and 6.5 ± 0.65mins in Group B and motor blockade was 14.3 ± 2.64 mins in Group R and 12.4 ± 2.06 mins in Group B. Mean duration of Analgesia in Group R was 432 ± 18.2 mins and in Group B was 492 ± 20.3 mins. There was no statistical significant difference in onset of sensory block, motor block and mean duration of analgesia between two groups (p>0.05).

Conclusion: Supraclavicular brachial plexus block using either 0.5% Ropivacaine or 0.5% Bupivacaine have similar onset of sensory and motor blockade, duration of analgesia but due to potentially proven safety profile in the literature compared to bupivacaine it may offer an advantage in modern clinical practice.

Keywords: Supraclavicular Block, Ropivacaine, Bupivacaine.

Introduction

Brachial plexus block provide a useful alternative to general anaesthesia for upper limb surgery. It results in obtaining ideal operating conditions by producing complete muscular relaxation and stable intra-operative hemodynamics. Regional Anaesthesia has a particular importance in the orthopedic surgery as compared to general anaesthesia due to better preservation of pharyngeal and laryngeal reflexes thus results in decreasing the risk of aspiration. Ropivacaine has several other advantages namely to produce differential blockade with less motor blockade along with reduced cardiovascular and neurological toxicity we hypothesized that ropivacaine can be used in supraclavicular brachial plexus block instead of bupivacaine for upper limb surgery. To test this hypothesis we compared the clinical characteristics of ropivacaine with bupivacaine at our institute on patients posted for upper limb surgery requiring brachial plexus block.

Aims and objectives: The primary aim of our study was to compare:
- The efficacy and clinical characteristics of ropivacaine 0.5% and bupivacaine 0.5% in supraclavicular brachial plexus block posted for forearm and hand surgery.

The secondary aim of our study was to see the effects of these drugs on haemodynamics and complications if any.
Subjects and Methods

This study was conducted at Punjab Institute of Medical Sciences, Deptt. Of Anaesthesia, Jalandhar. The present study was done on 60 cases of either sex of ASA Class I or II between age group of 18 and 50 years, weighing between 40 to 60 kilograms, scheduled for upper limb surgeries under supraclavicular brachial plexus block after approval by institutional ethical committee. The study was also registered in clinical trial registry (CTRI/2018/03/012750)

A detailed history was taken and the patients were thoroughly examined on the previous day before the surgery. The procedure to be performed was explained to each patient.

Exclusion criteria

History of respiratory, cardiac, hepatic or renal disease, convulsions, pregnant women. Patient with the history of bleeding disorders, local infection at the site of injection, anomalies of neck and shoulder, fracture clavicle. Patients sensitive to lignocaine or bupivacaine.

Baseline BP and Pulse were measured in preanaesthesia room, ringer lactate infusion was started after peripheral intravenous cannulation. Patients were premedicated with Inj. Glycopyrollate 0.01 mg per Kg of body weight intramuscularly half an hour before performing the block. Patients were shifted to operation theatre and monitor was connected. Inj. Midazolam 0.1 mg per Kg of body weight was given intravenously before administering brachial plexus block. The patients were randomly and equally divided into two groups of thirty each by computer generated randomization. The group R (Ropivacaine) patients were given 20 ml of 0.5% ropivacaine plus 10 ml normal saline while Group B (Bupivacaine) patients received 20 ml of 0.5% bupivacaine plus 10 ml normal saline. After turning the head to opposite side, painting and draping of the supraclavicular region was done. The supraclavicular block was performed by classical approach with a 23 gauge 4 cm long needle. The neurovascular bundle was located with peripheral nerve locator and the drug was injected on obtaining paraesthesia after negative aspiration for blood.

During Surgery pulse, systolic blood pressure, diastolic blood pressure were noted. Injection Diclofenac Sodium (1.5 mg/kg intramuscularly) was administered when VAS > 5. Total duration of Analgesia (time from onset of sensory blockade to time when patient has a visual analogue scale of >5) was also recorded between two groups.

The results were expressed as mean±SD. Statistical analysis for clinical characteristics was done by student t test. Mann withney test was used to analyse sex variation and ANOVA was used to analyze hemodynamic variations between two groups. p<0.05 considered as significant and p<0.01 considered as highly significant

Results

There was no statistical significant difference in age, weight & sex distribution between two groups

Onset and duration of Sensory and Motor Block

As [Table 1] shows, mean duration of onset of sensory block in ropivacaine group was 5.5 ± 0.89 mins and in bupivacaine group was 6.5 ± 0.65mins. Mean duration of onset of motor block in ropivacaine group was 14.3 ± 2.64 mins and in bupivacaine group was12.4 ± 2.06, but on inter group comparision there was no statistical significant difference in Onset of sensory block, Onset of motor block between two Groups (p>0.05).

Table 1: Onset of Sensory and Motor Block in two Groups (min) (Mean ± SD)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Group (Ropivacaine)</th>
<th>Group (Bupivacaine)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensory Block</td>
<td>5.5 ± 0.89</td>
<td>6.5 ± 0.65</td>
<td>> 0.05</td>
</tr>
<tr>
<td>Motor Block</td>
<td>14.3 ± 2.64</td>
<td>12.4 ± 2.06</td>
<td>> 0.05</td>
</tr>
</tbody>
</table>

Intra-operative Parameters:

There was no statistical significant difference in intra-operative parameters namely pulse, systolic blood pressure and diastolic blood pressure between two groups (p>0.05).

Duration of Analgesia:

used were also noted.

Motor blockade was also assessed by a 3 point motor score described by Bromage:

- 0-Full flexion and full extension of elbow, wrist and fingers,
- 1-Ability to move fingers only,
- 2-Inability to move fingers.

Onset of motor blockade was considered as the time from performance of block to the time when a complete inability to move fingers (score-2) was achieved. Duration of motor blockade was considered as time from complete motor blockade to the restoration of full flexion and extension of elbow, wrist and fingers (score-0).

Postoperative analgesia was assessed by the 10 point visual analogue scale.

- No pain = 0
- Mild pain = 1-3
- Moderate pain = 4-7
- Severe = more than 7
As [Figure 1] shows, duration of Analgesia in Ropivacaine Group was 420 ± 18.2 mins and in Bupivacaine group was 462 ± 20.3 mins, but data was statistically insignificant (p>0.05).

![Figure 1: Duration of Analgesia between two Groups (mins)](image)

Comparison of Complications:

In our study, 13.3% of patients have incidence of nausea and 3.3% have Horner’s Syndrome in Ropivacaine group as compared to patients having 20% incidence of nausea and 6.6% Horner’s Syndrome in Bupivacaine group (p>0.05).

<table>
<thead>
<tr>
<th>Complication</th>
<th>Group R (Ropivacaine)</th>
<th>Group B (Bupivacaine)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nausea</td>
<td>4 (13.3%)</td>
<td>6 (20%)</td>
</tr>
<tr>
<td>Horner’s Syndrome</td>
<td>1 (3.3%)</td>
<td>2 (6.6%)</td>
</tr>
</tbody>
</table>

Table 2: Comparison of Complications between two Groups.

Discussion

In our prospective randomised clinically study we compared 30 patients (Group R- 20ml of 0.5% ropivacaine with 10 ml normal saline) with 30 patients of (Group B- 20ml of 0.5% bupivacaine with 10ml normal saline). There was no statistical significant difference regarding age, weight and sex distribution between two groups. The onset of Sensory Block in Group R was 5.5 mins while in Group B was 6.5 mins and the onset of Motor Blockade in Group R was 14.3 mins and in Group B was 12.4 mins. Although Sensory onset was faster in Group R than in Group B, Motor onset was faster in Group B than in Group R but there was no statistical significant difference between two groups (p>0.05).

Similar observations were found by Tomoki Nishiyama(5) as follows:

Sensory and motor onset in ropivacaine group was 11 & 14 mins and in bupivacaine group was 10 & 11 mins respectively but the data was statistically insignificant (p>0.005).

Himat Vaghadia et al,[6] Stephen M Klein et al[3] also found in their study that there was no statistical significant difference between the onset of Sensory block and motor block among ropivacaine and bupivacaine group (p>0.05).

We found that total duration of analgesia in Group R was 7.0 hours (420 ± 18.2 mins) while in Group B was 7.6 hours (460 ± 20.3 mins) [Figure 1]. Statistically there was no significant difference between two groups (p>0.05).

Similar observations were found by Stephen M Klein et al and Vaghadia et al,[3,6] in their study regarding total duration of analgesia and showed no significant difference between ropivacaine and bupivacaine group for brachial plexus block (p>0.05).

There was no statistical significant difference of variation in intra-operative pulse, SBP, DBP between two Groups. Rosemary et al[9] also didn't observe significant in mean, heart rate, systolic blood pressure between 0.5% Ropivacaine and 0.5% Bupivacaine at different time intervals.

It is theoretically proved that Ropivacaine has lessor potential for cardiotoxicity as compared to Bupivacaine. In isolated rabbit purkinje’s fiber muscle preparation effect of Ropivacaine on the transmembrane action potential was generally less than that of Bupivacaine.[10] Intact animal studies have also demonstrated that Ropivacaine having lesser arrhythmogenic potential than Bupivacaine.[11] Scott et al,[12] also demonstrated depression of conduction on ECG and contractility (M-mode ECHO) at lower doses of Bupivacaine as compared to Ropivacaine.

So in view of lesser potential to toxicity in case of Ropivacaine in animal model it may be useful option in Brachial plexus block and other peripheral nerve blocks where risk of intravascular injection is very high.

Conclusion

We can conclude that ropivacaine can produce equal and comparable supraclavicular brachial plexus blockade to bupivacaine with reduced risk of complications.

References

3. Klein SM, Groengrass RA, Steele SM. A comparison of 0.5% bupivacaine, 0.5% ropivacaine and 0.75% ropivacaine for interscalene brachial plexus block. Anesth Analg 1998; 87:1316-9.
11. Reiz S, Hagemark S, Johansson G, Nath S: Cardiototoxic of...
Singh & Singh: Supraclavicular Brachial Plexus Block For Upper Limb Surgery

Copyright: © the author(s), publisher. Academia Anesthesiologica International is an Official Publication of “Society for Health Care & Research Development”. It is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Singh B, Singh I. Comparison of 0.5% Ropivacaine and 0.5% Bupivacaine in Supraclavicular Brachial Plexus Block For Upper Limb Surgery. Acad. Anesthesiol. Int. 2019;4(1):29-32.

DOI: dx.doi.org/10.21276/aan.2019.4.1.7

Source of Support: Nil. Conflict of Interest: None declared.