Light Microscopic Morphological Characteristics and Data on the Ultrastructure of the Cardiomyocytes.
Download PDF     Print

July-December 2017 | Vol 3 | Issue 2 | Page : 4-8

Katja Savova1, Paoleta Yordanova1, Dimo Dimitrov2, Stefan Tsenov1, Daniel Trendafilov2, Bilyana Georgieva2

1 Department of Anatomy, Histology, and Embryology, Medical University of Sofia, Bulgaria. 2Department of Medical Chemistry and Biochemistry, Medical University, Sofia, Bulgaria.

How to cite this article:: Savova K, Yordanova P, Dimitrov D, Tsenov S, Trendafilov D, Georgieva B. Light microscopic morphological characteristics and data on the ultrastructure of the cardiomyocytes. Acad. Anat. Int. 2017;3(2):4-8.


Many questions regarding the morphology of the cardiovascular system are yet to be answered. In particular, elucidating the core principles of the architectonics of the myocardium is of great importance for the understanding of the exact mechanisms of the cardiac functions and the pathogenic processes which constitute a prerequisite for cardiovascular diseases. A number of contemporary studies reveal the importance of the myocardium in almost every disease – either as a primary pathophysiological unit or as the target of the pathological damage. It has to be stated that the myocardium has a remarkable diagnostic and therapeutic potential. It is comprised of various types of cells – contractile cardiomyocytes of the atria and ventricles, cells of the sinoatrial node and Purkinje fibres, the latter two being part of the conducting system of the heart. The ultrastructural components of these cells include the various structures which ensure cellular contact and communication, the specialised structures of the cellular and the sarcoplasmic membrane and the different elements of the complex cytoskeleton. Furthermore, the orientation of the cardiomyocytes plays a key role not only for the mechanical contraction but also in the electric conduction and the energy metabolism of the cardiac muscle. Studies on the size, alignment and specific characteristics of the cardiomyocytes have the potential to provide a morphological base for the diagnostics of various cardiac pathologies.

Keywords: Morphology, myocardium, structure, cardiomyocytes.

  1. Legato MJ Ultrastructure of the Atrial, Ventricular, and Purkinje Cell with Special Reference to the Genesis of Arrhythmias. Circulation. 1973;47:178–189.
  2. James TN, Sherf L, Fine G, Morales AR. Comparative ultrastructure of the sinus node in man and dog. Circulation. 1966;34:139.
  3. James TN. Anatomy of the AV node of the dog. Anat Rec. 1964;148:15.
  4. Iliev A, Kotov G, Landzhov B, Jelev L, Dimitrova IN, Malinova L, et al. A comparative analysis of capillary density in the myocardium of normotensive and spontaneously hypertensive rats. Acta Morphol Anthropol. 2017;24(1-2):19-25.
  5. Iliev AA, Kotov GN, Landzhov BV, Jelev LS, Kirkov VK, Hinova-Palova DV. A comparative morphometric study of the myocardium during the postnatal development in normotensive and spontaneously hypertensive rats. Folia Morphol (Warsz). 2017; (in press).
  6. Iliev AA, Kotov GN, Landzhov BV, Jelev LS, Dimitrova IN, Hinova-Palova DV. A comparative quantitative analysis of the postnatal changes in the myocardium of the left and right ventricle in rats. Folia Med (Plovdiv). 2017; (in press).
  7. Kostin S, Scholz D, Shimada T. The internal and external protein scaffold of the T-tubular system in cardiomyocytes. Cell Tissue Res. 1998;294:449–460.
  8. Iliev A, Jelev L, Landzhov B, Kotov G, Hinova-Palova, Ovtscharoff W. Postnatal changes in the myocardium of the rat. A comparative light microscopic and immunohistochemical study. Comp Rend Acad Bulg Sci. 2016;69(4):505-512.
  9. Iliev A, Jelev L, Landzhov B, Kotov G, Hinova-Palova, Ovtscharoff W. Neuronal NOS immunoreactivity in the myocardium of the rat during the postnatal period. Compt Rend Acad Bulg Sci. 2016;69(7):921-926.
  10. Iliev A, Jelev L, Landzhov B, Kotov G, Hinova-Palova, Ovtscharoff W. An immunohistochemical study of the expression of neuronal NOS in the myocardium of spontaneously hypertensive rats. Compt Rend Acad Bulg Sci. 2017;70(8):1157-1162.
  11. Sommer JR, Johnson EA. Cardiac muscle: A comparative study of Purkinje fibers and ventricular fibers. J Cell Biol. 1968;36:497.
  12. Weidman S. Electrical constants of trabecular muscle from mammalian heart. J Physiol. (London) 1970;210:1041.
  13. Fozzard HA. Membrane capacity of the cardiac Purkinje fiber. J Physiol. 1965;182:255.
  14. Gupta M, Gupta MP. Cardiac hypertrophy: old concepts, new perspectives. Mol Cell Biochem. 1997;176:273–279.
  15. Kumarapeli AR, Wang X. Genetic modification of the heart: chaperones and the cytoskeleton. J Mol Cell Cardiol. 2004;37:1097–1109.
  16. Georgiev GP, Iliev A, Landzhov B, Dimitrova IN, Kotov G, Malinova L, et al. Localization of matrix metalloproteinase-2 in injured medial collateral ligament epiligament in rat knee. Compt Rend Acad Bulg Sci. 2017;70(2):273-278.
  17. Iliev A, Georgiev GP, Dimitrova IN, Kotov G, Malinova L, Rashev P, et al. Expression of matrix metalloproteinase-2 and 9 in the medial collateral ligament epiligament in rat knee. Acad Anat Int. 2016;2(2):44-48.
  18. Iliev A, Georgiev GP, Kotov G, Dimitrova IN, Malinova L, Rashev P, et al. Immunohistochemical study of matrix metalloproteinase-9 in medial collateral ligament epiligament in rat knee after grade III injury. Acad Anat Int. 2017;3(1):20-25.
  19. Iliev A, Georgiev GP, Kotov G, Landzhov B, Stokov L, Slavchev S, et al. Correlation between radiographic appearance and matrix metalloproteinase-9 expression in giant cell tumour of bone. Compt Rend Acad Bulg Sci. 2017; (in press).
  20. Georgiev GP, Iliev A, Kotov G, Kinov P, Slavchev S, Landzhov B. Light and electron microscopic study of the medial collateral ligament epiligament tissue in human knees. World J Orthop. 2017;8(5):372-378.
  21. Kotov G, Iliev A, Landzhov B, Jelev L, Dimitrova IN, Hinova-Palova. Postnatal changes in the morphology of the myocardium in rat ventricles. Arch Anat Physiol. 2017;2(1):011-017.
  22. Stanchev S, Iliev A, Malinova L, Landzhov B, Hinova-Palova D. Histological study on the postnatal alterations in the rat kidney. Scr Sci Med. 2017;49(1):38-42.
  23. Stanchev SS, Iliev AA, Malinova LG, Landzhov BV, Kotov GN, Hinova-Palova DV. Light microscopic study on renal morphological alterations in spontaneously hypertensive rats. J Biomed Clin Res. 2017; (in press).
  24. Fatkin D, Graham RM. Molecular mechanisms of inherited cardiomyopathies. Physiol Rev. 2002;82:945–980.
  25. Pyle WG, Solaro RJ. At the crossroads of myocardial signaling: the role of Z-discs in intracellular signaling and cardiac function. Circ Res. 2004;94:296–305.
  26. Takada F, Vander Woude DL, Tong HQ. Myozenin: an alpha-actinin- and gamma-filamin-binding protein of skeletal muscle Z lines. Proc Natl Acad Sci. (USA) 2001;98:1595–1600.
  27. Gregorio CC, Antin PB. To the heart of myofibril assembly. Trends Cell Biol. 2000;10:355–362.
  28. Solaro RJ. Remote control of A-band cardiac thin filaments by the I-Z-I protein network of cardiac sarcomeres. Trends Cardiovasc Med. 2005;15:148–152.
  29. Gregorio CC, Granzier H, Sorimachi H, Labeit S. Muscle assembly: a titanic achievement? Curr Opin Cell Biol. 1999;11:18–25.
  30. Solaro RJ, Van Eyk J. Altered interactions among thin filament proteins modulate cardiac function. J Mol Cell Cardiol. 1996;28:217–230.
  31. Borg TK, Johnson LD, Lill PH. Specific attachment of collagen to cardiac myocytes: in vivo and in vitro. Dev Biol. 1983;97:417-423.
  32. Baharvand H, Azarnia M, Parivar K, Ashtiani SK. The effect of extracellular matrix on embryonic stem cell-derived cardiomyocytes. J Mol Cell Cardiol. 2005;38:495-503.
  33. Schweitzer SC, Klymkowsky MW, Bellin RM, Robson RM, Capetanaki Y, Evans RM. Paranemin and the organization of desmin filament networks. J Cell Sci. 2001;114:1079–1089.
  34. Camelliti P, Green CR, Kohl P. Structural and functional coupling of cardiac myocytes and fibroblasts. Adv Cardiol. 2006;42:132-149.
  35. Severs NJ, Dupont E, Thomas N. Alterations in cardiac connexin expression in cardiomyopathies. Adv Cardiol. 2006;42:228–242.
  36. Li J, Patel VV, Radice GL. Dysregulation of cell adhesion proteins and cardiac arrhythmogenesis. Clin Med Res. 2006;4:42–52.
  37. McElhinny AS, Schwach C, Valichnac M, Mount-Patrick S, Gregorio CC. Nebulin regulates the assembly and lengths of the thin filaments in striated muscle. J Cell Biol. 2005;170:947–957.
  38. Korte FS, McDonald KS, Harris SP, Moss RL. Loaded shortening, power output, and rate of force redevelopment are increased with knockout of cardiac myosin binding protein-C. Circ Res. 2003;93:752–758.
  39. Nikolova V, Leimena C, McMahon AC. Defects in nuclear structure and function promote dilated cardiomyopathy in lamin A/C-deficient mice. J Clin Invest. 2004;113:357–369.
  40. Manilal S, Sewry CA, Pereboev A. Distribution of emerin and lamins in the heart and implications for Emery-Dreifuss muscular dystrophy. Hum Mol Genet. 1999;8:353–359.
  41. Kong KY, Kedes L. Cytoplasmic nuclear transfer of the actin-capping protein tropomodulin. J Biol Chem. 2004;279:30856–30864.

  • AI Journal in Index Coopernicus
  • AI Journal in Index Medicus
  • AI Journal in WHO Hinari
  • AI Journal in Daoj