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ABSTRACT  

Background: In the present study, we used immunohistochemistry for α -

gustducin and Growth Associated  Protein-43  (GAP-43)  to  examine  

the  spatial  distribution  of  the  solitary chemosensory cells primarily in the 
nasopalatine ducts of rat at the time of weaning, which is lack in the 

literature. Methods: We found abundant solitary cells labeled with α-

gustducin in the nasopalatine duct and vomeronasal organ of rats. In the 
nasopalatine duct, these cells were more frequent in the medial wall 

epithelium; meanwhile appreciable number of α-gustducin labeled cells were 

localized only in the neuroepithelium portion of the vomeronasal organ. We 

found the number of these cells increased toward the entries of the 
nasopalatine and vomeronasal ducts into the nasal cavity. We also found 

GAP-43 heavily expressed in the core of nasopalatine duct, close to the 
basement membrane and around the blood vessels and cavernous spaces of 

the vomeronasal organ. Results: GAP-43 labeled axons apposed the 
solitary chemosensory cells closely, either coursing along or wrapping the 
solitary chemosensory cells. Individual cells were apposed by one or a few 
intraepithelial nerve fibers and a single fiber  sometimes  contacted  a  few  
solitary  chemosensory  cells.  Intraepithelial  GAP-43 labeled fibers were 
more frequent toward the nasal cavity and the entry of nasopalatine and 

vomeronasal ducts in close association with the solitary chemosensory cells. 
Conclusion: We conclude that α -gustducin-expressing  cells  alongside  

the  GAP-43  intraepithelial  nerves  in  the nasopalatine  and  vomeronasal  
ducts  suggests  that  they  share  the  same  transduction mechanisms. 
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INTRODUCTION  
 
The olfactory system of mammals consists of several 
subsystems, each of which may serve distinct functions 
by using different signal transduction pathways and 
projecting to   different   brain   areas    (Ma et al. 2003;  
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Kociánová et al. 2006). The vomeronasal complex is 
one of these subsystems, composed primarily of the 
vomeronasal organ (VNO), which lies along both sides 
of the ventrorostral aspect of the nasal septum. In 
rodents and bats, the VNO opens directly into the nasal 
cavity close by the nasopalatine (NPD), which extends 
through the incisive canal, from the incisive papilla in 
the mouth to the floor of the nasal cavity  (Estes 1972). 
The presence of NPD is required to detect the odors of 
ingested food in most mammals. Thus, the two NPD 
contribute to the vomeronasal system, which also 
includes neural projections from the VNO to the 
vomeronasal (accessory olfactory) bulb (Døving and 
Trotier 1998). Descriptions in the literature have largely 
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focused upon the vomeronasal epithelium, which 
consists of a sensory and a non-sensory epithelium 
lining the medial and lateral side of the cavity, 
respectively. Solitary chemosensory cells (SCCs) are 
distributed in the respiratory tree (Merigo et al. 2005; 
Tizzano et al. 2011) and the VNO (Zancanaro et al. 
1999; Ogura et al. 2010) of rodents. These SCCs have 
neurogenic nature as they expressed GAP-43 and some 
neuronal markers (Dennis et al. 2003; Ma et al. 2003; 
Weiler and Benali 2005). In this report, we aim to 
demonstrate the distribution of SCCs and the associated 
nerves primarily in the NPD using α - gustducin and 
GAP-43 immunohistochemistry in the rat, which is still 
lacking in the available literature.GAP-43, is a neuronal 
membrane phosphoprotein, which is well known to be 
expressed in large amounts by neurons during 
development, and exhibited excellent validity for 
labeling the gustatory nerves in the embryonic tongue 
and the subsequent innervation of adult taste buds in 
sheep (Mistretta and Haus 1996), rat (Mbiene and 
Mistretta 1997; Wakisaka et al. 1998; El Sharaby et al. 
2004), and mouse (Ringstedt et al. 1999). In addition, 
we used antibody against α-gustducin, G-protein 
specifically expressed by mature light (type 2) taste bud 
cells (Tabata et al. 1995; Yang et al. 2000; El Sharaby 
et al. 2004). 

 

MATERIALS ANDMETHODS 
 
The nasopalatine papilla (NP) and nasopalatine duct 
(NPD) and adjacent parts of the nasal septum were 
collected from 10 healthy Sprague-Dawley rats of both 
genders at 1-2 months of age. Dissected specimens were 
fixed in 4% formaldehyde for 3-4 days, decalcified with 
7.5% EDTA for 2-3 weeks at 4°C, and then soaked in 
20% sucrose/ PBS at 4°C overnight for cryoprotection. 
Tissue blocks were oriented and transverse 15 µm thick 
sections were cut with a cryostat at -25 °C, thaw-
mounted onto poly-L-lysine-coated glass slides, and air 
dried for 90 min prior to staining. For double 
immunofluorescence, stained sections with polyclonal 
α-gustducin were labeled with FITC conjugated anti67 
rabbit for 60 min, rinsed with  PBS  and  subsequently  
incubated  with  monoclonal  GAP-43  (1:3000;  
Chemicon International, CA) for 60 min. Then, they 
were incubated with Cy3- conjugated anti-mouse IgG 
diluted 1:500 in PBS (Molecular Probes, OR, USA) for 
90 min at room temperature. Sections were cover-
slipped with Vectashield and viewed with a 
fluorescence microscope (Axioskop 2 plus, Carl Zeiss) 
using the appropriate exciting filter. The specificity of 
the primary antibodies against α -gustducin and GAP-
43 have been reported in a previous literature (El 
Sharaby et al. 2004). As controls for double 
immunofluorescence, sections were incubated with 

normal serum instead of the primary antibody, and these 
sections resulted in no specific reactions. 
 

 

RESULTS 
 

 
Figure 1: Schematic drawing of a parasagittal view through a 
rat’s head showing the position of nasopalatine duct (NPD) 
and vomeronasal organ (VNO). NC - nasal cavity; OC – oral 
cavity; OfE - olfactory epithelium; P - pharynx; SP - soft 
palate; T - tongue. 
Figure 2: Section at the cutline in A showing α-gustducin 
labeled solitary cells (SCCs) (arrowheads) in the medial and 
lateral wall epithelium of the NPD. Note: transition of the 
medial wall epithelium from the taste bud region (OE) to the 
respiratory epithelium (NE). Bar: 200 µm. 
Figure 3: Magnification of the right box in B showing 
bipolar α-gustducin labeled SCCs in the medial wall 
epithelium of the NPD. Bar: 10 µm. 
Figure 4: Magnification of the left box in B showing bipolar 
α-gustducin labeled SCCs exclusively in the sensory 
epithelium (dorsal) of the entry passageway of vomeronasal 
duct (VND). Bar: 50 µm. 
Figure 5: Appreciable number of bipolar α-gustducin labeled 
SCCs only in the neuroepithelium portion with one process 
reaching the surface epithelium contacting the lumen of 
NPD while the second process extended toward the base of 
the epithelium where abundant blood vessels and cavernous 
spaces were found (Cav). Bar: 50 µm. 
Figure 6-8: Nasopalatine duct of rat labeled with α-gustducin 
(6) and GAP-43 (7) and merged immunofluorescence (8). In 
Fig. 6, arrowheads show typically bipolar α-gustducin 
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labelled SCCs. In Fig. 7, heavily GAP-43 expression was 
evident in the core of NPD close to the basement  
membrane.  Arrows  show  heavily  labeled  fibers  in  the  
papillary  epithelium especially  toward  the  nasal  cavity  
and  in  close  association  with  the  SCCs  (×  40 
magnification) 
Figure 9-11: Vomeronasal organ of rat labeled with α-
gustducin (9), GAP-43 (10) and merged 
immunofluorescence (11). In Fig. 9, arrowheads show 
typically bipolar α-gustducin labelled SCCs extending along 
the whole neuroepithelium portion from the surface 
epithelium contacting the lumen of the VND to the base of 
epithelium. In Fig. 10, extensive GAP-43 expression was 
evident close to the basement membrane, around the blood 
vessels and near the cavernous spaces (Cav) of the VNO. 
Arrows show heavily labeled fibers either coursing along or 
wrapping the SCCs (× 40 magnification). 

 
The oral opening of the NPD extended vertically 
upwards on each side of the NP and then obliquely 
rostromedially through the incisive canal to the nasal 
cavity [Figure 1]. The epithelial lining of the duct was 
thinner toward its entry in the floor of the nasal 
vestibule [Figure 2]. The VNO coursed rostrally on 
each side of the nasal septum, lateral to the NPD, where 
the sensory epithelium became dorsal and the non-
sensory epithelium ventral. The duct of VNO coursed 
rostrally, until it opened close by the entry of NPD. We 
found heavily labeled cells with α-gustducin along the 
entire length of the NPD and the VNO [Figure 2-5]. In 
the NPD, these SCCs were longitudinally oriented with 
a slender apical process directed toward the lumen and 
the other toward the basal membrane. They were 
substantially abundant in the medial wall epithelium as 
well as the entry of the duct into the nasal cavity, while 
fewer cells were found in the lateral wall epithelium of 
the duct [Figure 3]. In the VNO, appreciable number of 
SCCs labeled with α-gustducin were localized in the 
neuroepithelium portion, with one process reaching the 
lumen surface epithelium while the second process 
extended toward the base of the epithelium where 
abundant blood vessels and cavernous spaces were 
found [Figure 4 and 5]. In the present study, the double 
immunofluorescence of GAP-43 with α-gustducin was 
helpful to examine the relationship of SCCs with the 
surrounding nerves in the NPD and VNO [Figure 6-11]. 
Extensive expression of GAP-43 was remarkable in the 
core of the NPD especially close to the basement 
membrane, and the labeled nerves entered the papillary 
epithelium of the duct passing toward the nasal cavity in 
close association with the SCCs [Figure 8-9]. In the 
VNO, extensive expression of GAP-43 was also evident 
close to the basement membrane, around the blood 
vessels and cavernous spaces [Figure 10-11]. GAP-43 
labeled axons apposed the SCCs labeled with α-
gustducin closely, either coursing along or wrapping the 
SCCs. Interestingly, individual SCCs that found only in 

the neuroepithelium portion of the VNO were opposed 
by one or a few GAP-43 labeled intraepithelial nerve 
fibers, and a single fiber sometimes contacted a few 
SCCs. 
 

DISCUSSION 
 
In this report, we found appreciable number of solitary 
cells expressing α-gustducin and associated with nerves 
heavily labelled with GAP-43 along the entire length of 
the NPD and in the neuroepithelium portion of the VNO 
of rat. Individual SCCs were remarkably opposed by 
one or a few intraepithelial nerve fibers and a single 
fiber sometimes contacted a few SCCs. Intraepithelial 
GAP-43 labeled fibers were more frequent toward the 
nasal cavity and the entry of NPD and VND in close 
association with the α-gustducin labelled SCCs. These 
cells are morphologically identical to the SCCs 
distributed in the respiratory tree (Merigo et al. 2005; 
Tizzano et al. 2011) and VNO of mouse (Zancanaro et 
al. 1999; Ogura et al. 2010). These SCCs were 
longitudinally oriented and more frequent in the medial 
wall epithelium. This result, which is not reported 
before is consistent with the demonstration of α -
gustducin heavy labeled cells in the taste buds that 
found only in the medial wall epithelium of the NPD of 
rat (El Sharaby et al. 2004). We found appreciable 
number  of  SCCs  labeled  with  α-gustducin  in  the  
neuroepithelium  portion  of  VNO.   
However, Zancanaro et al. (1999) found α -gustducin 
positive cells exclusively in the neighboring non-
receptor epithelium in the VNO of mouse. In 
accordance to Ogura et al. (2010), most of the 
intraepithelial fibers, at this region, are necessary to 
innervate the SCCs, which relay sensory information 
onto the trigeminal fibers. Our findings support that the 
chemoreceptors in the NPD and VNO could operate as 
detectors of irritating stimuli (Finger et al. 2003). 
Further studies are required to investigate a possible 
phylogenetic contribution between these cells in both 
the NPD and VND as stated by Hoon et al. (l999). In 
conclusion, the finding that α -gustducin-expressing 
cells alongside the GAP-43 intraepithelial nerves that 
we found in the NPD and VND suggests that they share 
the same transduction mechanisms. 
 

 
CONCLUSION  
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